Loading the CPU - Parallel Query Option

What is the Parallel Query Option.

The Parallel Query Option is a mechanism that allows a large query to be split up (transparently to the end-user) into a number of smaller queries that can all be run simultaneously.

The Parallel Query Option (PQO) should not be confused with the Oracle Parallel Server (OPS) which allows multiple instances of Oracle (usually running on a number of separate machines) to address a single set of database files and uses a high-speed ‘distributed lock manager’ to synchronize the ownership of blocks and locks across the separate SGA’s

Init.ora Parameters
To use PQO, you need to have a number of ‘floating’ processes available in the system that can be called by your normal shadow process (dedicated server). These processes, called the ‘parallel query slaves’ will have names like ora_p000_{SID}, and you can have up to 256 of them.

The parameter parallel_min_servers specifies the number of such processes that you want permanently running and waiting for calls. Since such processes take up machine resources you may want to keep this number low for normal running: if you set parallel_max_servers Oracle will then spawn further processes on demand up to this limit. One odd feature of dynamically spawned processes, however, is that they are owned at the O/S level by the user running the session’s shadow process, and not by any special ‘Oracle id’.

To ensure that the dynamically spawned processes die when they are no longer needed, you can set parallel_server_idle_time to the number of minutes a process is allowed to be idle before it dies.

Once you have the capability of running parallel queries, there are two other parameters that you should consider. These relate to the way the system performance will degrade as the load increases.

Consider the problem of a query that takes 3 minutes to complete when running with a degree of parallelism of 15. What happens if the database is so busy that no parallel slaves are free when someone starts the query. Is it acceptable for the query to run serially and take 45 minutes, or should it simply die with a warning message?

Set parallel_min_percent to a number between 0 and 100, and if Oracle is unable to get that percentage of the demanded degree of parallelism it returns an error (ORA-12827 insufficient parallel query slaves available). For example, you want a tablescan at degree 6. You have parallel_min_percent set to 50. If the query can run at least at degree 3 with the current number of slaves available it will run, but it there are insufficient slaves available for running at degree 3 the error is raised.

Associated with this parameter is optimizer_percent_parallel which affects the assumptions that the optimizer makes about the degree of parallelism at which a query is expected to run.

Imagine a query that works best at a high degree of parallelism (20 say) by using hash-joins, but gives an acceptable performance at a lower level of parallelism (5 to 15 say) by switching to nested loops. If the optimizer decides that the default degree of the query is 20, then it will always generate the hashing path, even when the system is busy and there are not enough free slaves around to run the query at degree 20. Setting this parameter to a number between 0 and 100, however, tells the optimizer to reduce the assumed degree of parallelism - setting it to 50 in our example would make the optimizer choose the path that was appropriate to degree 10, hence taking the nested loop path.

Invoking PQO
After setting your parameters and restarting your database, what makes it happen?

The first possibility is to give a table an explicit (or implicit) degree of parallelism:

alter table PX parallel (degree 4);

alter table PX parallel (degree default)

Whenever a query involves this table, the optimizer will try to find a path that uses parallel techniques on the table.

Two points that are specific to 7.3.2:

First, the Cost Based Optimizer will always take over in queries where there are parallel tables available even if the current optimizer goal is Rule. Second, the default keyword translates into ‘the smaller of the number of CPUs and the number of devices across which the table appears to be spread’.

The second possibility for introducing parallelism into a query is to put an explicit hint into it:

select /*+ parallel (px, 4)*/

count(*) from PX;

select /*+ parallel (px, default) */

count(*) from PX;

The third option is to define views that contain hints, so that application code does not have to worry about degrees of parallelism,

create or replace view big_px as

select

/*+

 parallel (px1, 4)

 parallel (px2, 6)

*/

from px1, px2

where

px1.id = px2.x_id

;

An interesting, and possibly irritating, feature of the view definition above is the question of what happens when there are several parallel tables in a query.

In general it is not possible to predict the degree of parallelism that such a query will use, as it depends on the usage, the driving table, and the join paths used. In the view above I could only say that, if no other parallel tables are introduced, the final query will run with degree 1, 4 or 6.

When to use it:
Typical queries may need to retrieve and crunch a large number of rows to return a small result set. The Parallel Query Option can be very effective in reducing the time for such queries - on the plus side you have the options of increasing parallel throughput on disks and breaking up the sort requirements to avoid sorts to disk - on the minus side you need to consider the risk of unsuitable data distributions that result in excessive communication and sort costs.

Small Parent Scan to Large Child:
The obvious use of this option is with the recently introduced HASH JOIN facility where two tables are scanned and the smaller is hashed to be used as a target for the larger and most of the benefit comes from the ease of separating the I/O on tablescanning. However another option (particularly of use in conjunction with partition views) is in scanning a small table and using indexed accesses into a large table where the physical data distribution is suitably packed.

Object Creation:
When running in parallel, particularly with the unrecoverable option, you may find that the time to create an object (table or index) is significantly reduced. But there are a couple of side-effects (see further down) to worry about when chasing this benefit.

