Tips to Write Effective Queries

SQL Statement Processing Phases

The four most important phases in SQL are parsing binding, executing and fetching.

PARSE: During the Parse Phase, The oracle server searches for the statement in the shared pool, checks the syntax and semantics and then determines the execution plan.

BIND: It scans the statement for bind variables and assigns a value to each variable.

EXECUTE: The Server applies the parse tree to the data buffers, performs necessary I/O and sorts for DML statements.

FETCH: Retrieves rows for a SELECT statement during the fetch phase. Each fetch retrieves multiple rows, using an array fetch.

Optimizer Method and how to know the Driving Table.

A small "golden rule" is that your driving table should be the one that eliminates the must rows and you should choose that one first. But…. Where to specify the driving Table?

In Rule Based Optimizer (RBO), the ordering of the table names in the FROM clause determines the driving table. RBO chooses the driving order by taking the tables in the FROM clause RIGHT to LEFT

CBO determines join order from costs derived from gathered statistics. If there are no statistics, if the optimizer_mode IS COST then CBO chooses the driving order of tables from LEFT to RIGHT in the FROM clause, IF the optimizer_mode IS CHOOSE then RBO method will be used (RIGHT to LEFT

).

Hence, it is important to know the driving table, which has the smallest number of rows in a query.

The driving table is important because it is retrieved first, and the rows from the second table are then merged into the result set from the first table. If three tables are being joined, select the intersection tables as the driving table. The intersection table is the table that has many tables dependent on it. So because usually you will use CBO (if you don't know ask your DBA!!!), you should do something like:

SELECT something

FROM detail, master

WHERE detail.key = master.key

Now, there is usually other conditions in the WHERE clause and the optimizer (RULE - based) will decide which table to use as a driving table depending on what conditions is present and what indexes is available.

In this case the detail table will be the driving table because of the explicit condition on the key column in the table

SELECT something

FROM detail, master

WHERE detail.key = master.key

AND detail.key = 'some value'

While in this case the master table will be driving

SELECT something

FROM detail, master

WHERE detail.key = master.key

AND master.key = 'some value'

So you have to look at whole statement and of course this is relevant for RULE based approach ONLY!

The case for the Cost Based Optimizer (CBO) is that if it has enough statistical information about the tables, it can construct the plan based on data, not just structure and might use another access path for the same statement as the RULE based approach would use.

The best way to identify the driving table is to look at the Explain plan for the query.

The WHERE clause is the main decision maker about which indexes to use. You should always try to use your unique indexes first, and then if that is not possible then use a non-unique index.

For a query to use an index, one or more fields from that index need to be mentioned in the WHERE clause. On concatenated indexes the index will only be used if the first field in the index is mentioned.

The more of its fields are mentioned in the where clause, the better an index is used. Furthermore, if only some or one of the fields are used in the WHERE Clause, it should be the first fields in the index. If the second field in an index is used in a where clause but not the first field, the index will not get used.

The "ORACLE8i the Complete Reference" book has a chapter on Optimizer. In this chapter under the description of Nested Loops method, the author talks about the importance of the FROM clause and the way the optimizer processes the tables listed there.

The TIPS

SQL is a flexible language. More than one SQL statement may meet the needs of your application.

Although two SQL statements may produce the same result, Oracle may process one faster than the other. You can use the results of the EXPLAIN PLAN statement to compare the execution plans and costs of the two statements and determine which is more efficient. Following are some tips that help in writing efficient queries.

0. Existence of a row

Do not use ‘Select count(*)…’ to test the existence of a row. Open an explicit cursor, fetch once, and then check cursor%NOTFOUND

Another way to manage this is:

If processing is conditional on the presence of certain records in a table, instead of a code such as:

SELECT Count(*)
INTO v_count
FROM items
WHERE item_size = 'SMALL';

IF v_count = 0 THEN
 -- Do processing related to no small items present
END IF;

If there are many small items, time and processing will be lost retrieving multiple records which are not needed. This would be better written like one of the following:

SELECT Count(*)
INTO v_count
FROM items
WHERE item_size = 'SMALL'
AND rownum = 1;

IF v_count = 0 THEN
 -- Do processing related to no small items present
END IF;

OR

BEGIN
 SELECT '1'
 INTO v_dummy
 FROM items
 WHERE item_size = 'SMALL'
 AND rownum = 1;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- Do processing related to no small items present
END;

In these examples only single a record is retrieved in the presence/absence check.

1. Avoid the use of NULL or IS NOT NULL. Instead of:

Select * from clients where phone_number is null;
Use:

Select * from clients where phone_number = 0000000000000000;

2. Use DECODE when you want to scan same rows repetitively or join the same table repetitively.

3. If you specify 2 tables in the FROM clause of a SELECT statement, the parser will process the tables depending on the Optimizer Method that you are using (see below for more details). Basically:

-RBO chooses the driving order by taking the tables in the FROM clause RIGHT to LEFT.

-CBO determines join order from costs derived from gathered statistics. If there are no statistics then CBO chooses the driving order of tables from LEFT to RIGHT in the FROM clause. This is OPOSITE to the RBO.

4. If three tables are being joined, select the intersection tables as the driving table. The intersection table is the table that has many tables dependent on it.

5. Always use table alias and prefix all column names with the aliases when you are using more than one table.

6. Use NOT EXISTS in place of NOT IN or EXISTS instead of IN.

 The EXISTS function searches for the presence of a single row meeting the stated criteria as opposed to the IN statement which looks for all occurrences. In sub-query statement such as the following NOT IN clause causes an internal Sort/Merge.

 SELECT *

 FROM emp e

 WHERE e.deptno NOT IN (SELECT d.deptno

 FROM dept d

 WHERE d.dname like %S%);

 To improve performance, use the following code.

 SELECT *

 FROM emp e

 WHERE NOT EXISTS (SELECT d.deptno

 FROM dept d

 WHERE d.deptno = e.deptno

 AND d.dname LIKE '%S%’);

 This would allow such statements to use an index, if one exists.

7. Use Joins in place of EXISTS.

 SELECT *

 FROM emp e

 WHERE EXISTS (SELECT d.deptno

 FROM dept d

 WHERE e.deptno = d.deptno

 AND d.dname = 'RESEARCH');

 To improve performance use the following:

 SELECT *

 FROM emp e, dept d

 WHERE e.deptno = d.deptno

 AND d.dname = ‘RESEARCH’;

8. EXISTS in place of DISTINCT.

 SELECT DISTINCT d.deptno, d.dname ,

 FROM dept d, emp e

 WHERE d.deptno = e.deptno;

 The following SQL statement is a better alternative.

 SELECT d.deptno , d.dname

 FROM dept d

 WHERE EXISTS (SELECT e.deptno

 FROM emp e

 WHERE d.deptno = e.deptno);

9. The optimizer fully evaluates expressions whenever possible and translates certain syntactic constructs into equivalent constructs. This is done either because Oracle can more quickly evaluate the resulting expression than the original expression or because the original expression is merely a syntactic equivalent of the resulting expression.

Any computation of constants is performed only once when the statement is optimized rather than each time the statement is executed. Consider these conditions that test for monthly salaries greater than 2000:

 sal > 24000/12

 sal > 2000

 sal*12 > 24000

 If a SQL statement contains the first condition, the optimizer simplifies it into the second condition.

 Note that the optimizer does not simplify expressions across comparison operators. The optimizer does not simplify the third expression into the second. For this reason, application developers should write conditions that compare columns with constants whenever possible, rather than conditions with expressions involving columns.

 The Optimizer does not use index for the following statement.

 SELECT *

 FROM emp

 WHERE sal*12 > 24000;

 Instead use the following statement.

 SELECT *

 FROM emp

 WHERE sal > 24000/12;

10. Never use NOT in an indexed column. Whenever Oracle encounters a NOT in an index column, it will perform full-table scan.

 SELECT *

 FROM emp

 WHERE NOT deptno = 0;

 Instead use the following.

 SELECT *

 FROM emp

 WHERE deptno > 0;

11. Never use a function / calculation on an indexed column (unless you are SURE that you are using an Index Function Based new in Oracle 8i). If there is any function is used on an index column, optimizer will not use index. Use some other alternative. If you don’t have another choice, keep functions on the right hand side of the equal sign. The Concatenate || symbol will also disable indexes

 Examples:

 /** Do not use **/

 SELECT * FROM emp WHERE SUBSTR (ENAME, 1,3) = ‘MIL’;

 /** Suggested Alternative **/

 Note: Optimizer uses the index only when optimizer_goal is set to FIRST_ROWS.

 SELECT * FROM emp WHERE ENAME LIKE 'MIL%’;

 /** Do not use **/

 SELECT * FROM emp WHERE sal! = 0;

 Note: Index can tell you what is there in a table but not what is not in a table.

 Note: Optimizer uses the index only when optimizer_goal = FIRST_ROWS.

 /** Suggested Alternative **/

 SELECT * FROM emp WHERE sal > 0;

 /** Do not use **/

 SELECT * FROM emp WHERE ename || job = ‘MILLERCLERK’;

 Note: || is the concatenate function. Like other functions it disables index.

 /** Suggested Alternative **/

 Note: Optimizer uses the index only when optimizer_goal=FIRST_ROWS.

 SELECT *

 FROM emp

 WHERE ename = 'MILLER'

 AND job = ‘CLERK’;

12. Whenever possible try to use bind variables

13. Avoid calculations on indexes columns.

Write WHERE approved_amt > 26000/3

instead of WHERE approved_amt/3 > 26000.

13. Use the same convention for all your queries. Remember that

Select * from emp where dept = :dept_no

Is different than

Select * from EMP where dept = :dept_no

14. Tuning the WHERE Clause:

- When using AND Clauses in the WHERE Clause, put the most stringent AND Clause furthest from the WHERE.

- When using OR Clauses in the WHERE Clause, put the most stringent OR Clause closest to the WHERE.

15. Do not use the keyword HAVING use the keyword WHERE instead

16. Avoid Multiple Sub queries where possible

Instead of this:

Update emp

Set emp_cat = (select max (category) from emp_categories),

 sal_range = (select max(sal_range) from emp_categories);

Do this:

Update emp

Set (emp_cat, sal_range) =

 (Select max (category), max (sal_range) from emp_categories)

17. Use IN in place of OR

Least Efficient:

Select ….

From location

Where loc_id = 10 or loc_id=20 or loc_id = 30

Most Efficient

Select ….

From location

Where loc_id in (10,20,30)

Explain Plan

The Explain Plan command uses a table to store information about the execution plan chosen by the optimizer.

Create a plan table using the script utlxplan.sql.

This will create the default output table called PLAN_TABLE. The script is located at $ORACLE_HOME/rdbms/admin directory.

EXPLAIN PLAN COMMAND

To check your query you are going to run your explain plan like:

Explain plan set statement_id = ‘test’ for

 <your_query>

Example:

EXPLAIN PLAN

set statement_id='test' for

select *

from emp

where eno=1000;

This command inserts the execution plan of the SQL statement into the plan table, and adds the name tag ‘test’ for future reference.

DISPLAYING THE EXECUTION PLAN

We can put the following SQL into a SQL script and run it in SQL*Plus.

column "Query Plan" format a60

select id, lpad(' ',2*level) || operation

||decode(id,0,'Cost='||position)

||' '||object_name as "Query Plan"

from plan_table

where statement_id='test'

connect by pripor id=parent_id

start with id=0

Explain Plan Operations Reference

Table Access Methods

FULL - Reading every row in the table, every block up to the high water mark.

CLUSTER - Access via an index cluster.

HASH - A hash key is issued to access one or more rows in a table with a matching hash value.

BY ROWID - Access a single row in a table by specifying its ROWID. This is the fastest method for accessing a row usually from an index.

Index Access Methods

UNIQUE SCAN - A retrieval of a single ROWID from an index.

RANGE SCAN - A retrieval of one or more ROWIDs from an index. Indexed values are scanned in ascending order.

RANGE SCAN DESCENDING - A retrieval of one or more ROWIDs from an index. Indexed values are returned in descending order.

AND-EQUAL - An operation that accepts multiple sets of ROWIDs and returns the intersection of the sets, eliminating duplicates. This operation is user for single-column indexes access path.

Join Operations

CONNECT BY - A retrieval of rows in a hierarchical order for a query containing a CONNECT BY clause.

HASH JOIN - An operation that joins two sets of rows and returns the same result.

-ANTI - A hash anti-join.

-SEMI - A hash semi-join.

MERGE JOIN - An operation that accepts two sets of rows, each sorted by a specific value, combines each row from one set with the matching rows from the other.

OUTER - A merge join operation to perform an outer join statement.

-ANTI - A merge anti-join.

-SEMI - A merge semi-join.

NESTED LOOPS - An operation that accepts two sets of rows, an outer set and an inner set. Oracle compares each row of the outer set with each row of the inner set and returns those rows that satisfy a condition.

-OUTER - A nested loops operation to perform an outer join statement.

Sort Operations

-AGGREGATE - A retrieval of a single row that is the result of applying a group function to a group of selected rows.

-UNIQUE - An operation that sorts a set of rows to eliminate duplicates.

-GROUP BY - An operation that sorts a set of rows into groups for a query with the GROUP BY clause.

-JOIN - An operation that sorts a set of rows before a merge-join.

-ORDER BY - An operation that sorts a set of rows for a query with and ORDER BY clause

Set Operations

UNION - An operation that accepts two sets of rows and returns the union of sets, eliminating duplicates.

VIEW - An operation that performs a view's query and then returns the resulting rows to another operation.

AUTOTRACE

We can obtain the execution plan and some additional statistics on running a SQL command automatically using AUTOTRACE.

SET AUTOTRACE <OPTIONS> <EXPLAIN or STATISTICS>

Options

OFF - Disables autotracing SQL statements

ON - Enables autotracing SQL Statements

TRACEONLY - Enables auto tracing SQL Statements, and Suppresses Statement Output

EXPLAIN - Displays execution plans, but does not display statistics

To use the EXPLAIN option, we must first create the PLAN_TABLE in our schema before using the EXPLAIN by running utlxplan.sql or manually.

SQL> SET AUTOTRACE TRACEONLY STATISTICS

SQL> set autotrace traceonly explain

SQL> select * from dual;

Execution Plan

--

0 SELECT STATEMENT Optimizer=CHOOSE

1 0 TABLE ACCESS (FULL) OF 'DUAL'

STATISTICS Displays statistics, but does not display execution plans.

To access STATISTICS data, we must have access to dynamic performance tables.

This can be granted by granting the role plustrace created in plustrce.sql script. The DBA can run the script as internal or sys and then grant the role to the users using the AUTOTRACE option.

SQL> SET AUTOTRACE TRACEONLY STATISTICS

The most important results are the db block gets, consistent gets, physical reads, redo size, sorts (memory) and sorts (disk).

NOTE: If both Explain and Statistics are omitted, execution plans and statistics will be displayed by default.

Access Methods in detail
a. Full Table Scan (FTS)
In a FTS operation, the whole table is read up to the high water mark (HWM). The HWM marks the last block in the table that has ever had data written to it. If you have deleted all the rows then you will still read up to the HWM. Truncate is the only way to reset the HWM back to the start of the table (and delete all the info). Buffers from FTS operations are placed on the Least Recently Used (LRU) end of the buffer cache so will be quickly aged out. FTS is not recommended for large tables unless you are reading >5-10% of it (or so) or you intends to run in parallel.
Example FTS explain plan:

SQL> explain plan for select * from dual;

Query Plan

SELECT STATEMENT [CHOOSE] Cost=
TABLE ACCESS FULL DUAL

b. Index lookup
The data is accessed by looking up key values in an index and returning rowids. A rowid uniquely identifies an individual row in a particular data block. This block is read via single block I/O. In this example an index is used to find the relevant row(s) and then the table is accessed to lookup the ename column (which is not included in the index):

SQL> explain plan for
select empno,ename from emp where empno=10;

Query Plan

SELECT STATEMENT [CHOOSE] Cost=1
TABLE ACCESS BY ROWID EMP [ANALYZED]
INDEX UNIQUE SCAN EMP_I1

Notice the 'TABLE ACCESS BY ROWID' section. This indicates that the table data is not being accessed via a FTS operation but rather by a rowid lookup. In this case looking up values in the index first has produced the rowid.
The index is being accessed by an 'INDEX UNIQUE SCAN' operation. This is explained below. The index name in this case is EMP_I1. If all the required data resides in the index then a table lookup may be unnecessary and all you will see is an index access with no table access.
In the following example all the columns (empno) are in the index. Notice that no table access takes place:

SQL> explain plan for
select empno from emp where empno=10;

Query Plan

SELECT STATEMENT [CHOOSE] Cost=1
INDEX UNIQUE SCAN EMP_I1

Indexes are presorted so sorting may be unecessary if the sort order required is the same as the index.
e.g.

SQL> explain plan for select empno,ename from emp
where empno > 7876 order by empno;

Query Plan
--
SELECT STATEMENT [CHOOSE] Cost=1
TABLE ACCESS BY ROWID EMP [ANALYZED]
INDEX RANGE SCAN EMP_I1 [ANALYZED]

In this case the index is sorted so ther rows will be returned in the order of the index hence a sort is unecessary.

explain plan for
select /*+ Full(emp) */ empno,ename from emp
where empno> 7876 order by empno;

Query Plan
--
SELECT STATEMENT [CHOOSE] Cost=9
SORT ORDER BY
TABLE ACCESS FULL EMP [ANALYZED] Cost=1 Card=2 Bytes=66

Because we have forced a FTS the data is unsorted and so we must sort the data after it has been retrieved.
There are 4 methods of index lookup:

b1.index unique scan
b2.index range scan
b3.index full scan
b4.index fast full scan

b1. Index unique scan
Method for looking up a single key value via a unique index. Always returns a single value. You must supply AT LEAST the leading column of the index to access data via the index, however this may return > 1 row as the uniqueness will not be guaranteed.
Example explain plan:

SQL> explain plan for
select empno,ename from emp where empno=10;

Query Plan

SELECT STATEMENT [CHOOSE] Cost=1
TABLE ACCESS BY ROWID EMP [ANALYZED]
INDEX UNIQUE SCAN EMP_I1

b2.Index range scan
Method for accessing multiple column values. You must supply AT LEAST the leading column of the index to access data via the index. Can be used for range operations (e.g. > < <> >= <= between). e.g.

SQL> explain plan for select empno,ename from emp
where empno > 7876 order by empno;

Query Plan
--
SELECT STATEMENT [CHOOSE] Cost=1
TABLE ACCESS BY ROWID EMP [ANALYZED]
INDEX RANGE SCAN EMP_I1 [ANALYZED]

A non-unique index may return multiple values for the predicate col1 = 5 and will use an index range scan

SQL> explain plan for select mgr from emp where mgr = 5;

Query plan

SELECT STATEMENT [CHOOSE] Cost=1
INDEX RANGE SCAN EMP_I2 [ANALYZED]

b3.Index Full Scan
In certain circumstances it is possible for the whole index to be scanned as opposed to a range scan (i.e. where no constraining predicates are provided for a table). Full index scans are only available in the CBO as otherwise we are
unable to determine whether a full scan would be a good idea or not. We choose an index Full Scan when we have statistics that indicate that it is going to be more efficient than a Full table scan and a sort. For example we may do a Full index scan when we do an unbounded scan of an index and want the data to be ordered in the index order. The optimizer may decide that selecting all the information from the index and not sorting is more efficient than doing a FTS or a Fast Full Index Scan
and then sorting. An Index full scan will perform single block i/o's and so it may prove to be inefficient.
e.g.
Index BE_IX is a concatenated index on big_emp (empno,ename)

SQL> explain plan for select empno,ename from big_emp order by empno,ename;

Query Plan
--
SELECT STATEMENT [CHOOSE] Cost=26
INDEX FULL SCAN BE_IX [ANALYZED]

b4. Index Fast Full Scan (not very used)
Scans all the block in the index. Rows are not returned in sorted order Introduced in 7.3 and requires 733_PLANS_ENABLED=TRUE and CBO may be hinted using INDEX_FFS hint uses multiblock i/o can be executed in parallel can be used to access second column of concatenated indexes. This is because we are selecting the entire index.
Note that INDEX FAST FULL SCAN is the mechanism behind fast index create and recreate. E.g.
Index BE_IX is a concatenated index on big_emp (empno,ename)

SQL> explain plan for select empno,ename from big_emp;

Query Plan
--
SELECT STATEMENT [CHOOSE] Cost=1
INDEX FAST FULL SCAN BE_IX [ANALYZED]

Selecting the 2nd column of concatenated index:

SQL> explain plan for select ename from big_emp;

Query Plan
--
SELECT STATEMENT [CHOOSE] Cost=1
INDEX FAST FULL SCAN BE_IX [ANALYZED]

c. Rowid
This is the quickest access method available. Oracle simply retrieves the block specified and extracts the rows it is interested in.
Access by rowid :

SQL> explain plan for select * from dept where rowid = ':x';

Query Plan

SELECT STATEMENT [CHOOSE] Cost=1
TABLE ACCESS BY ROWID DEPT [ANALYZED]

Table is accessed by rowid following index lookup:

SQL> explain plan for
select empno,ename from emp where empno=10;

Query Plan

SELECT STATEMENT [CHOOSE] Cost=1
TABLE ACCESS BY ROWID EMP [ANALYZED]
INDEX UNIQUE SCAN EMP_I1

Joins
A Join is a predicate that attempts to combine 2 row sources. The join order makes a significant difference to the way in which the query is executed. By accessing particular row sources first, certain predicates may be satisfied that are not satisfied by with other join orders. This may prevent certain access paths from being taken.
e.g. Suppose there is a concatenated index on A(a.col1,a.col2)
Note that a.col1 is the leading column.

Consider the following query:

select A.col4
from A,B,C
where B.col3 = 10
and A.col1 = B.col1
and A.col2 = C.col2
and C.col3 = 5

We could represent the joins present in the query using the following schematic:

B <---> A <---> C
col3=10 col3=5

There are really only 2 ways we can drive the query: via B.col3 or C.col3. We would have to do a Full scan of A to be able to drive off it. This is unlikely to be efficient with large tables; If we drive off table B, using predicate B.col3=10 (as a filter or lookup key) then we will retrieve the value for B.col1 and join to A.col1. Because we have now filled the leading column of the concatenated index on table A we can use this index to give us values for A.col2 and join to A.
However if we drive of table c, then we only get a value for a.col2 and since this is a trailing column of a concatenated index and the leading column has not been supplied at this point, we cannot use the index on a to lookup the data.
So it is likely that the best join order will be B A C. The CBO will obviously use costs to establish whether the individual access paths are a good idea or not.
If the CBO does not choose this join order then we can hint it by changing the from clause to read:
from B,A,C

and using the /*+ ordered */ hint. The resultant query would be:

select /*+ ordered */ A.col4
from B,A,C
where B.col3 = 10
and A.col1 = B.col1
and A.col2 = C.col2
and C.col3 = 5

Join Types

a. Sort Merge Join (SMJ)
b. Nested Loops (NL)
c. Hash Join

a. Sort Merge Join
Rows are produced by Row Source 1 and are then sorted. Rows from Row Source 2 are then produced and sorted by the same sort key as Row Source 1. Row Source 1 and 2 are NOT accessed concurrently. Sorted rows from both sides are then merged together (joined)

 MERGE
 / \
SORT SORT
 | |
Row Source1 Row Source 2

If the row sources are already (known to be) sorted then the sort operation is unnecessary as long as both 'sides' are sorted using the same key. Presorted row sources include indexed columns and row sources that have already been sorted in earlier steps. Although the merge of the 2 row sources is handled serially, the row sources could be accessed in parallel.

SQL> explain plan for
select /*+ ordered */ e.deptno,d.deptno
from emp e,dept d
where e.deptno = d.deptno
order by e.deptno,d.deptno;

Query Plan

SELECT STATEMENT [CHOOSE] Cost=17
MERGE JOIN
SORT JOIN
TABLE ACCESS FULL EMP [ANALYZED]
SORT JOIN
TABLE ACCESS FULL DEPT [ANALYZED]

Sorting is an expensive operation, especially with large tables. Because of this, SMJ is often not a particularly efficient join method.

b. Nested Loops
First we return all the rows from row source 1. Then we probe row source 2 once for each row returned from row source 1

Row source 1
~~~~~~~~~~~~ 
Row 1 -------------- -- Probe -> Row source 2 
Row 2 -------------- -- Probe -> Row source 2 
Row 3 -------------- -- Probe -> Row source 2 

Row source 1 is known as the outer table 
Row source 2 is known as the inner table 
Accessing row source 2 is known a probing the inner table. For nested loops to be efficient it is important that the first row source returns as few rows as possible as this directly controls the number of probes of the second row source. Also it helps if the access method for row source 2 is efficient as this operation is being repeated once for every row returned by row source 1. 

SQL> explain plan for 
select a.dname,b.sql 
from dept a,emp b 
where a.deptno = b.deptno; 

Query Plan 
------------------------- 
SELECT STATEMENT [CHOOSE] Cost=5 
NESTED LOOPS 
TABLE ACCESS FULL DEPT [ANALYZED] 
TABLE ACCESS FULL EMP [ANALYZED] 
  

c. Hash Join 
New join type introduced in 7.3. In theory is more efficient than NL & SMJ. Used by the CBO only. Smallest row source is chosen and used to build a hash table and a bitmap. The second row source is hashed and checked against the hash table looking for joins. The bitmap is used as a quick lookup to check if rows are in the hash table and are especially useful when the hash table is too large to fit in memory. 

SQL> explain plan for 
select /*+ use_hash(emp) */ empno 
from emp,dept 
where emp.deptno = dept.deptno; 

Query Plan 
---------------------------- 
SELECT STATEMENT [CHOOSE] Cost=3 
HASH JOIN 
TABLE ACCESS FULL DEPT 
TABLE ACCESS FULL EMP 

Hash joins are enabled by the parameter HASH_JOIN_ENABLED=TRUE in the init.ora or session. TRUE is the default in 7.3 
  

d. Cartesian Product 
A Cartesian Product is done where they are no join conditions between 2 row sources and there is no alternative method of accessing the data Not really a join as such as there is no join! Typically this is caused by a coding mistake where a join has been left out. It can be useful in some circumstances - Star joins uses cartesian products. 
Notice that there is no join between the 2 tables: 

SQL> explain plan for 
select emp.deptno,dept,deptno 
from emp,dept 

Query Plan 
------------------------------ 
SLECT STATEMENT [CHOOSE] Cost=5 
MERGE JOIN CARTESIAN 
TABLE ACCESS FULL DEPT 
SORT JOIN 
TABLE ACCESS FULL EMP 

The CARTESIAN keyword indicates that we are doing a cartesian product. 
  
  

Operations 
Operations that show up in explain plans 

a. sort 
b. filter 
c. view 
  

a. Sorts 
There are a number of different operations that promote sorts 

order by clauses 
group by 
sort merge join 

Note that if the row source is already appropriately sorted then no sorting is required. This is now indicated in 7.3: 

SORT GROUP BY NOSORT 
INDEX FULL SCAN ..... 

In this case the group by operation simply groups the rows it does not do the sort operation as this has already been completed. 
Sorts are expensive operations especially on large tables where the rows do not fit in memory and spill to disk. By default sort blocks are placed into the buffer cache. This may result in aging out of other blocks that may be reread by other processes. To avoid this you can use the parameter: 
<Parameter:SORT_DIRECT_WRITES> which does not place sort blocks into the buffer cache. 
  

b. Filter 
Has a number of different meanings used to indicate partition elimination may also indicate an actual filter step where one row source is filtering another functions such as min may introduce filter steps into query plans 
In this example there are 2 filter steps. The first is effectively like a NL except that it stops when it gets something that it doesn't like (i.e. a bounded NL). This is there because of the not in. The second is filtering out the min value: 

SQL> explain plan for 
select * from emp 
where empno not in (select min(empno) from big_emp group by empno); 

Query Plan 
------------------ 
SELECT STATEMENT [CHOOSE] Cost=1 
FILTER **** This is like a bounded nested loops 
TABLE ACCESS FULL EMP [ANALYZED] 
FILTER **** This filter is introduced by the min 
SORT GROUP BY NOSORT 
INDEX FULL SCAN BE_IX 

This example is also interesting in that it has a NOSORT function. The group by does not need to sort because the index row source is already pre sorted. 
  

c. Views 
When a view cannot be merged into the main query you will often see a projection view operation. This indicates that the 'view' will be selected from directly as opposed to being broken down into joins on the base tables. A number of constructs make a view non mergeable. Inline views are also non mergeable. 
In the following example the select contains an inline view that cannot be merged: 

SQL> explain plan for 
select ename,tot 
from emp, 
(select empno,sum(empno) tot from big_emp group by empno) tmp 
where emp.empno = tmp.empno; 

Query Plan 
------------------------ 
SELECT STATEMENT [CHOOSE] 
HASH JOIN 
TABLE ACCESS FULL EMP [ANALYZED] 
VIEW 
SORT GROUP BY 
INDEX FULL SCAN BE_IX 

In this case the inline view tmp that contains an aggregate function cannot be merged into the main query. The explain plan shows this as a view step

1
6
Diego Pafumi - Oracle DBA

